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1 Illustration of differences between counting bin definitions
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Supplementary Figure 1: Illustration of the differences between bins generated for DEXSeq-noaggreg,
DEXSeq-default, featureCounts-flat and featureCounts-exon, for two overlapping genes on the same strand.
The top panel shows the gene models for the overlapping genes (transcripts from the different genes are
colored in different colors). The panels below the genome coordinate track show the counting bins defined by
each method (from top to bottom: DEXSeq-noaggreg, DEXSeq-default, featureCounts-flat and featureCounts-
exon). Bins assigned to different genes/complexes are colored in different colors. Here, DEXSeq-default
merges the overlapping genes into a complex, while DEXSeq-noaggreg and featureCounts-flat instead exclude
the overlapping parts and define bins based only on regions that are unique to one gene. featureCounts-exon
uses the original exons as counting bins.
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Supplementary Figure 2: Illustration of the differences between bins generated for DEXSeq-noaggreg,
DEXSeq-default, featureCounts-flat and featureCounts-exon, for three overlapping genes on different strands
(blue gene on positive strand, green and pink on negative strand). The top panel shows the gene mod-
els for the three genes (transcripts from the different genes are colored in different colors). The panels
below the genome coordinate track show the counting bins defined by each method (from top to bottom:
DEXSeq-noaggreg, DEXSeq-default, featureCounts-flat and featureCounts-exon). Bins assigned to different
genes/complexes are colored in different colors. Here, DEXSeq-default merges the overlapping genes on the
same strand into a complex and keeps the gene on the opposite strand separate. DEXSeq-noaggreg ex-
cludes the region overlapping both the green and the pink gene (since they are on the same strand). For
featureCounts-flat, we instead exclude all regions overlapping at least two genes (regardless of strand) and
defines bins based only on remaining regions. featureCounts-exon uses the original exons as counting bins.
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2 Comparison of the two transcriptomes used for the simulations

The two organisms that were used as basis for the simulations in this study were chosen to explore the
impact of different transcriptome characteristics. In Supplementary Table 1 and Supplementary Figure 3
we summarise some of the properties of the two transcriptomes. Most strikingly, the fruit fly (Drosophila
melanogaster) has (on average) considerably fewer isoforms per gene, but the exons and transcripts are longer
than for the human transcriptome (Homo sapiens). There is a higher degree of overlap among the human
genes, manifested by the larger fraction of genes and counting bins that the default DEXSeq pre-processing
workflow assigns to gene complexes consisting of more than one gene. There is also a large difference in the
fraction of isoforms that were considered non-expressed in the two real data sets used as the basis for the
simulations. While only around 13% of the fruit fly transcripts had an estimated TPM of 0 by RSEM, this
was the case for almost 60% of the human transcripts.
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Supplementary Figure 3: Summary of the two transcriptomes used as basis for the simulations (Drosophila
(fruit fly) and human). The human transcriptome has more transcripts per gene (lower left), while the number
of exons per transcript is similar for the two organisms (upper right). The fruit fly genome has longer exons
and transcripts than the human genome (upper left and lower right).
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Supplementary Table 1: Summary statistics for the two transcriptomes used as basis for the simulations.
The Ensembl gtf files that are used for the simulation contain multiple instances of exons that are part of
multiple isoforms. The ’Number of exons’ given in the table represents the total number of exons in the
respective gtf files (counting each instance of repeated exons), while the ’Number of unique exons’ represents
the number of unique exon IDs in the file. The ’Number of non-expressed transcripts’ and ’Fraction of
non-expressed transcripts’ are based on the RSEM TPM estimates from the real RNA-seq data sets, which
were used as the basis for the simulation.

D. melanogaster H. sapiens
Number of genes 13937 20410

Number of transcripts 26951 145342

Number of exons 159182 1069500

Number of unique exons 77310 566352

Min number of isoforms per gene 1 1

Median number of isoforms per gene 1 5

Mean number of isoforms per gene 1.93 7.12

Max number of isoforms per gene 74 82

Min number of exons per isoform 1 1

Median number of exons per isoform 4 5

Mean number of exons per isoform 5.91 7.36

Max number of exons per isoform 82 363

Number of genes and complexes (DEXSeq-default) 13569 19099

Number of complexes (DEXSeq-default) 341 840

Number of DEXSeq-default counting bins 75162 478504

Number of DEXSeq-default bins falling in gene complexes 3524 44984

Fraction of DEXSeq-default bins falling in gene complexes 0.0469 0.0940

Number of genes and complexes (casper) 11505 12544

Number of complexes (casper) 1587 2022

Number of casper counting bins 555346 3523252

Number of casper bins falling in gene complexes 149394 1174239

Fraction of casper bins falling in gene complexes 0.269 0.333

Number of genes and complexes (cuffdiff) 13569 19102

Number of complexes (cuffdiff) 266 829

Number of non-expressed transcripts (TPM=0) 3422 86958

Fraction of non-expressed transcripts 0.127 0.598
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3 Simulation and study design details

Supplementary Figure 4 shows a schematic illustration of the simulation and analysis parts of the current
study. For the simulation part, we first generate an index for RSEM from the genome fasta and gtf file for
the organism of interest. Using a pair of fastq files from a real data set, we then estimate RSEM model
parameters and transcript expression levels to use as the basis for the simulation. We use a mean/dispersion
relationship estimated from real data (see [12]) to generate sample-wise transcript expression estimates, and
also introduce differential transcript usage for 1,000 genes, by switching the relative abundances for the two
most abundant isoforms between the conditions. Finally, we use RSEM to simulate paired fastq files with
a read length of 101 bp for each of the six samples, as well as a table with the true differential transcript
usage (DTU) status for each gene in the simulation.

For the analysis part, we start by preparing annotation files and index files necessary for the subse-
quent steps. We use DEXSeq to generate two flattened gff files (using default parameters as well as setting
--aggregate=’no’ to avoid merging overlapping genes into complexes). We also generate a manually flat-
tened gtf file (using functions from Bioconductor [5]) to use for counting with the Rsubread package [8]. The
Rsubread package was also used for counting based on the original gtf file (without flattening). Illustrations
of the differences in the counting bins defined by these four approaches for two example genes are given in
Supplementary Figures 1 and 2.

MISO requires a gff3 annotation file for indexing, and this was generated using a perl script downloaded
from https://github.com/mbomhoff/bio-utils/blob/master/gtf_to_gff.pl. Finally, cuffdiff requires
an annotation file containing tss id and p id fields, which was generated using the cuffcompare module of
the cufflinks toolbox. We generated index files for kallisto and TopHat2, and aligned the simulated reads
with TopHat2 to generate bam files. The preprocessed data were submitted to nine counting methods, one
event-based method (rMATS) and one assembly-based method (cuffdiff). All count matrices were used as
input to DEXSeq for differential bin usage testing (blue arrows in Supplementary Figure 4).

The genes in our study were simulated to have the same expression level (in TPM = transcript per million
units) in the two conditions. We selected 1,000 genes in each simulation to show differential usage between
the conditions. These genes were selected randomly among genes with sufficiently high expression (expected
count of at least 500) and at least two sufficiently highly expressed isoforms (relative abundance above
10%). For the genes affected by the differential isoform usage, although the number of simulated transcripts
is similar between the conditions, the identity of these transcripts are different (they represent different
isoforms). Since the isoforms may have different lengths, the expected read count for these genes may differ
between the conditions, even if the TPM is similar. By construction, for the differentially used isoforms, the
TPM differs between the conditions. These properties are illustrated in Supplementary Figures 5 and 6 for
the fruit fly and human simulations, respectively.
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Supplementary Figure 4: Schematic illustration of the simulation and analysis parts of the current
study. The yellow boxes represent the simulated fastq files, which were used as input to all DTU detection
methods. The blue arrows represent testing for differential bin usage between conditions with DEXSeq,
which was done for all nine count matrices. The green boxes contain the final gene-level results, which
were compared to the true DTU status obtained from the simulation. The three red circles indicate the
modifications that were introduced (independently) to investigate the effects of changes to the annotation
catalog. Circle (1) represents the exclusion of 20% of the transcripts to generate an incomplete annotation
catalog. All downstream steps (from index building and alignment) were re-run after this modification. Circle
(2) represents the isoform-guided filtering performed for DEXSeq-noaggreg with the aim of improving the
FDR control. Similarly, circle (3) represents the bin-level filtering that was applied to the original DEXSeq-
noaggreg count matrix and contrasted with the isoform-guided filtering (see Section 14 in this Supplementary
Material).
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Supplementary Figure 5: Illustration of the average expression levels for genes and transcripts in the
two sample conditions, for the fruit fly simulation. The gene-wise TPM (upper left) is similar in the two
conditions, for all genes (regardless of differential splicing status). Since the expressed isoforms may have
different length, the average gene count (upper right) may potentially be different between the conditions
for the differentially spliced genes. However, this effect is weak in the fruit fly simulation shown here. On
the transcript-level (lower), the TPM of the differentially used isoforms are clearly different between the two
conditions, as expected. The diagonal lines are identity lines.
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Supplementary Figure 6: Illustration of the average expression levels for genes and transcripts in the
two sample conditions, for the human simulation. The gene-wise TPM (upper left) is similar in the two
conditions, for all genes (regardless of differential splicing status). Since the expressed isoforms may have
different length, the average gene count (upper right) may potentially be different between the conditions for
the differentially spliced genes. This effect is visible for some of the genes. On the transcript-level (lower),
the TPM of the differentially used isoforms are clearly different between the two conditions, as expected.
The diagonal lines are identity lines.
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4 Additional information about the counting methods

4.1 MISO

MISO (Mixture of Isoforms, v0.5.3) [6] is a probabilistic method that (in the “isoform-centric” mode) allows
to quantify the expression of individual isoforms and (optionally) test for differential usage between samples.
Among other information, the MISO output files provides, for each gene, the number of reads that are
consistent with any combination of the gene’s isoforms (including the number that are not consistent with
any isoform). We defined the counting bins as these isoform combinations, excluding the unassignable reads.
The MISO quantification is only performed for genes with at least two isoforms, and with at least one
assigned read. We did not apply the testing framework provided by MISO, since it is currently not able to
accommodate replicates.

4.2 DEXSeq

The python script dexseq prepare annotation.py, included in the DEXSeq R package (v1.14.0) [1], gen-
erates a “flattened” gene model reference file, where the counting bins are defined as disjoint gene parts. In
the flattening process, the default behaviour is to merge overlapping genes into complexes (which are named
by combining the names of the merged genes). We prepared flattened files using the default settings as well
as using the option --aggregate=’no’ where instead of merging overlapping genes, the overlapping parts
are excluded and genes are kept separate (see also Supplementary Figures 1 and 2). We used the python
script dexseq count.py, also included in the DEXSeq R package, to count the number of reads overlapping
each counting bin. A read was allowed to overlap and thereby contribute to the count for multiple counting
bins.

4.3 featureCounts

The featureCounts function from the Rsubread R package (v1.18.0) works similarly to the native DEXSeq
counting, summarising the number of reads falling in given genomic regions [7, 8]. We applied featureCounts

with two different reference gene model files. First, one that was manually flattened to mimic the flattening
performed by DEXSeq, but excluding also regions overlapping between genes on different strands, and
second, one which instead considered the original exons as the counting bins, without flattening (see also
Supplementary Figures 1 and 2). Reads overlapping multiple exons were assigned to all of them.

4.4 kallisto

Kallisto (v0.42.1) [2] directly quantifies the expression on the transcript level, returning an estimated read
count for each isoform. Hence, here the counting bins are defined by the isoforms themselves. To build the
transcriptome index needed for the kallisto quantification, we used the transcript fasta file that was created
by TopHat in the construction of the transcriptome index for the read alignment.

4.5 SplicingGraphs

Splicing graphs are directed acyclic graphs describing the splicing patterns of genes [4, 10, 13]. Each splicing
site (acceptor site, donor site, transcription start site or transcription end site) is represented by a node in the
graph (numbered by their position in the transcript) and the edges represent exons and introns connecting
the splicing sites. Transcripts are represented as paths in the splicing graph. We used the R package
SplicingGraphs (v1.8.1) to generate splicing graphs for the transcripts in our reference files and to assign
the reads to their edges (exons or introns), which are used as counting bins. Reads can be assigned to more
than one counting bin if they overlap multiple edges. We used the default settings of the SplicingGraphs
package, creating splicing graphs and quantifying only genes with at least two isoforms.
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4.6 casper

The casper R package (v2.2.0) implements a method for estimating transcript expression that is specifically
adapted for paired-end reads [9]. Similarly to DEXSeq, casper first splits the exons for a gene into disjoint
exon bins, and merges genes with any overlapping exons. The casper counting bins are, however, not the exon
bins themselves but exon paths, designed to incorporate more information that is of importance to differential
splicing detection. An exon path consists of a pair of exon sequences that are covered by each of the two
reads in a pair. By summarising the number of reads following given exon paths rather than individual
junctions or exons, casper arguably makes better use of the information provided by reads spanning more
than two exons. The combinatorial nature of the path construction implies that the number of counting
bins is typically much larger than for the other methods, and consequently the read count for each bin is
lower. In the casper R package, the exon path counts are used as a basis for estimating transcript expression
levels. In this study, however, we examine the usefulness of the intermediate exon path counts as the input
to DEXSeq.

4.7 TopHat junction counts

As a byproduct of the TopHat read alignment, the number of reads overlapping each exon junction is
calculated. We match these junctions to the reference gene models to assign them to genes, and use the
junctions as counting bins. With this counting approach, only the reads overlapping exon junctions are
contributing to the count, and thus many reads are not used at all. This may be particularly important if
the read length is short compared to the exon length.
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5 Comparison of count patterns

To better understand the different behaviours of the counting methods when combined with the DEXSeq
inference framework, we compared them in terms of their overall count patterns (Supplementary Figures 7
and 8). In both organisms, casper generated considerably more counting bins, and consequently a lower count
per bin, than the other methods. The overall number of reads assigned to each gene (the sum of the counts
assigned to all its counting bins) by casper was similar to many of the other methods (e.g., DEXSeq-noaggreg
and featureCounts-flat). Also SplicingGraph and featureCounts-exon (in the human simulation) divided the
transcriptome into a large number of counting bins, but this was a result of considering also non-coding
gene parts (SplicingGraph) or keeping many redundant bins (featureCounts-exon, see also Supplementary
Figures 1 and 2) and did not result in a lower count per bin, but rather a higher gene-level count. The gene-
level TopHat-junctions counts were lower than for many of the other methods, which was expected since
only junction-spanning reads contributed. The difference was more pronounced for the fruit fly simulation,
where the exons were long (compared to the reads) and thus relatively few reads spanned junctions.
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Supplementary Figure 7: Comparison of count patterns among the nine evaluated counting methods, in
the fruit fly simulation. The upper left panel shows the distribution of the number of bins per gene, where it
is clear that casper generates many more bins than most other counting methods, followed by SplicingGraph.
kallisto defines the counting bins as the isoforms themselves, and thus has a high peak at 0 corresponding
to genes with a single isoform. The upper right panel shows the distribution of the bin counts for the
different methods. The large number of bins for casper corresponds to a low count per bin, while the other
methods are more similar. The lower panel shows the distribution of the gene-level counts (the sum of the
bin counts per gene). As expected, the gene-level counts for TopHat-junctions are lower than those for the
other methods, since it only considers reads spanning exon junctions.
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Supplementary Figure 8: Comparison of count patterns among the nine evaluated counting methods,
in the human simulation. The upper left panel shows the distribution of the number of bins per gene.
As for the fruit fly simulation (Supplementary Figure 7), casper generates many more bins than the other
counting methods. kallisto defines the counting bins as the isoforms themselves, and thus has a peak at 0
corresponding to genes with a single isoform. The upper right panel shows the distribution of the bin counts
for the different methods. The large number of bins for casper corresponds to a low count per bin, while the
other methods are more similar. The lower panel shows the distribution of the gene-level counts (the sum
of the bin counts per gene). In this simulation, most reads span exon junctions (the exons are shorter than
for the fruit fly simulation), and thus the gene-level counts for TopHat-junctions are similar to those from
the other methods.
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6 Evaluation of cuffdiff with a modified gtf file

As discussed in the main text, cuffdiff considers only changes affecting coding parts of genes (that is, differ-
ences in the resulting proteins), as opposed to the other methods that consider all differences between exonic
regions. It is important to emphasize that also variations in the non-translated parts can have functional
implications, since they may, for example, be the binding sites of various proteins. Since a substantial frac-
tion of the introduced differential isoform usages did not impact the coding parts of the genes, we suspected
that the difference in perspective would have a considerable effect on the performance estimates for cuffdiff,
and that this was part of the reason for the apparently low power. Therefore, we also evaluated cuffdiff
with an artificial gtf file, where the CDS entries were excluded and replaced by the exons, and similarly the
protein IDs were replaced by transcript IDs. As expected, this improved the power of cuffdiff considerably
(Supplementary Figures 9-10), while keeping the FDR low. The best performance was seen for genes where
the relative abundance difference between the differentially used isoforms were large. For genes where the
two differentially used isoforms were expressed at similar levels, the detection power was very low.
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Supplementary Figure 9: Performance evaluation of cuffdiff using the original gtf file (cuffdiff), with which
we only consider changes in coding sequences, and using a modified, artificial gtf file where CDS entries were
replaced by exons and protein IDs with transcript IDs (cuffdiff-exon), to force cuffdiff to consider all changes
between transcripts. As expected, since many of the introduced changes in differential isoform usage don’t
lead to changes in the coding sequence, the latter approach showed an increased detection power.

Similarly to casper and DEXSeq-default, cuffdiff also merges overlapping genes into complexes, which also
may have a negative influence on the power. Evaluating cuffdiff based on only the genes shared with the
truth table gave a small improvement, but considerably smaller than for, e.g., casper (for example, the power
achieved for the human simulation with a q-value threshold of 0.05 increased from 0.14 to 0.16). The reason
for this is that a large part of the improvement seen above for casper in particular comes from the exclusion
of all genes that are too lowly expressed to be assigned a q-value by DEXSeq (Supplementary Figure 12),
and this is not applicable to cuffdiff.
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Supplementary Figure 10: Performance evaluation of cuffdiff using the original gtf file (cuffdiff), with
which we only consider changes in coding sequences, and using a modified, artificial gtf file where CDS entries
were replaced by exons and protein IDs with transcript IDs (cuffdiff-exon), to force cuffdiff to consider all
changes between transcripts. The results are stratified by the difference in relative abundance between the
two most abundant isoforms per gene (indicated in the panel headers as, e.g., [0.000,0.333)). As expected,
since many of the introduced changes in differential isoform usage don’t lead to changes in the coding
sequence, the latter approach showed an increased detection power, especially for genes with one dominant
isoform (right panel). Changes in relative usage of similarly expressed genes are difficult to detect with
cuffdiff (left panels).
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7 Performance evaluation stratified by the type of alternative
splicing event

Alternative splicing events can be classified into different classes, depending on how the differentially used
isoforms differ [11]. Here, we used AStalavista (v3.2) [3] to classify the alternative splicing event for each
of the genes affected by differential isoform usage in the two simulations. As for the number of differing
basepairs in the previous section, this could only be done for the truly differential genes, and thus we do not
report any observed FDR. We report results separately for five major “simple” alternative splicing events
(alternative donor sites, alternative acceptor sites, retained intron, skipped exon and mutually exclusive
exons), and group all other splicing events (including combinations of the simple ones) together. In the
human simulation, only 19 of the 1,000 induced isoform switches corresponded to a simple alternative splicing
event, which did not provide enough ground for a reliable analysis, and thus these results are reported only
for the fruit fly simulation (Supplementary Figure 11). Again, featureCounts-exon showed clear limitations
and among the simple alternative splicing events it could only reliably detect skipped exons and mutually
exclusive exons. Also rMATS could, as expected, only detect simple splicing events, but for these it showed
high power. The other methods showed overall similar detection power for all types of alternative splicing
events, also complex ones.
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Supplementary Figure 11: Stratification of performance by the type of alternative splicing event defined
by the differentially used isoforms. This evaluation is limited to genes affected by differential isoform usage,
and to the fruit fly simulation. We extract five types of ’simple’ events, and group all other events together.
The number of genes in each category is given in the panel headers. The three circles for each method
indicate the achieved TPR for three q-value thresholds: 0.01, 0.05 and 0.1. As expected, rMATS could only
detect the simple events that it is designed to capture. For these event types, however, it had high power.
featureCounts-exon showed poor detection power for most event types.
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8 Performance evaluation based on only genes shared between
results and truth

In the main text we evaluated the performance of the methods based on all genes in the annotation catalog.
Some methods, more precisely DEXSeq-default, casper and cuffdiff, merge overlapping genes into complexes.
Thus, the result table will contain some genes (complexes) that are not present in the annotation catalog
and thus can not be categorised as either true positives, true negatives, false positives or false negatives. On
the other hand, there are also genes that are present in the annotation catalog but for which we don’t have
any result. This is partly due to the merging of genes into complexes, and partly (for the counting methods)
due to DEXSeq only reporting gene-level q-values for genes where at least one counting bin was expressed
to a sufficient level so as to pass the independent filtering step applied by DEXSeq to reliably perform a
statistical test. Due to the different characteristics of the counting methods, the latter phenomenon affects
a different number of genes for the different methods. Since rMATS only considers simple splicing events,
only genes harbouring at least one such event will be considered, and no results will be generated for the
others. Thus, also here we may be missing a considerable number of genes from the annotation catalog in
the result table.

Here, we perform the evaluation of the methods’ performances using only the genes that are shared
between the annotation catalog and the result table for each method (Supplementary Figure 12). Thus, all
genes falling into complexes are excluded, as well as all genes where no counting bin returned a valid p-value
or where no test was performed. As expected, the largest improvement in power (compare to Figure 2 in the
main manuscript) is seen for casper, DEXSeq-default and rMATS, since all truly differential genes for which
no result is generated are excluded, and thus the detected true positives represent a larger fraction of the
(retained) truly differential genes.
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Supplementary Figure 12: Performance evaluation based on only the genes for which the DTU status is
known and for which the respective methods return a q-value. The performance of casper, DEXSeq-default
and rMATS is improved compared to original evaluation (main text, Figure 2).
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9 Performance evaluation stratified by compositional difference
between differentially used isoforms

We also investigated the effect of the number of basepairs that distinguished the differentially used isoforms
(Supplementary Figure 13). For a given differential gene (truly affected by DTU), we defined the number
of differing basepairs between the differentially used isoforms as the total number of basepairs in the union
of the two isoforms, minus the total number of basepairs in their intersection. Note that since the number
of basepairs differing between the differentially used isoforms was only known for truly differential genes,
we could not report the observed FDR in this case. It was clear that featureCounts-exon did not manage
to satisfactorily capture differential isoform usage for genes where the isoforms differed by less than 100
bp, in any of the simulations. Especially in the human simulation, kallisto showed a tendency to be more
sensitive than the other methods for detecting switches between genetically similar isoforms. The sensitivity
of rMATS decreased with increasing difference between the differentially used isoforms, likely since it is
limited to detecting simple splicing events.
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Supplementary Figure 13: Stratification of performance by the compositional difference between the
differentially used isoforms. This evaluation is limited to genes that are truly differentially spliced. The
compositional difference between two isoforms is defined as the total number of basepairs in the union of
the isoforms, minus the total number of basepairs in their intersection. This number is given in the header
of each panel, as well as the number of genes in each category. The three circles for each method indicate
the achieved TPR for three q-value thresholds: 0.01, 0.05 and 0.1. featureCounts-exon was not able to
discriminate between very similar isoforms (left panels), while most other methods showed similar power
independently of the compositional difference between the differentially used isoforms.
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10 rMATS FPs occur due to events with very low prevalence

We observed in the main text that rMATS showed a relatively high false discovery rate, especially for genes
with one dominant isoform. To better understand the reason behind this, we extracted the inclusion ratios
for all events that were part of truly non-differential genes. Since the genes were non-differential (that is,
not affected by differential isoform usage), the average inclusion ratios for the events in each of these genes
were similar in the two conditions. For this reason, we represented each event by the average inclusion ratio
across all replicates. Comparing the distribution of these average inclusion ratios between the false positives
(events with an estimated q-value below 0.05) and true negatives (events with an estimated q-value above
0.05), we see that the false positive events show an enrichment for values close to 0, and a relative depletion
of values in between the extremes (Supplementary Figure 14).
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Supplementary Figure 14: Average inclusion level (across the two conditions) of the “false positive events”
(events in truly non-differential genes, which are assigned a q-value below 0.05 by rMATS) and the “true
negative events” (events in truly non-differential genes, which are assigned a q-value above 0.05 by rMATS).
In both organisms, the false positive events show an enrichment towards the low inclusion levels (close to
0), and a relative depletion of average inclusion levels between 0.25 and 0.75.
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11 Performance evaluation stratified by overall gene expression
level

The gene expression level (total gene TPM, which as shown in Supplementary Figures 5 and 6 is similar
across the two conditions) had a non-negligible effect on the performance of the counting methods, with
highly expressed genes showing higher FDR and TPR (Supplementary Figure 15). However, the gene
expression level was associated with the number of isoforms for the gene, and thus these effects could not be
unambiguously disentangled.
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Supplementary Figure 15: Stratification of performance by gene expression level. A ’high’ expression
level corresponds to TPM exceeding the median of the TPM for the truly differentially spliced genes, and
a ’low’ expression level correspondingly to TPM below the median TPM for the truly differentially spliced
genes. The total number of genes (n) and the number of truly differential genes (n.ds) in each category
are given in the panel headers. The three circles for each method indicate the achieved FDR and TPR for
three q-value thresholds: 0.01, 0.05 and 0.1. For both organisms, the FDR control is worse and the power
somewhat higher for the highly expressed genes.

22



12 Performance evaluation stratified by incomplete annotation-
supplementary figures

In the main text we noted that an incomplete annotation catalog had a more detrimental impact on the
performance for the fruit fly simulation than for the human simulation. Here, we expand on this observation
and break it down further. First, we note that the main determinant of the performance with the incomplete
catalog is the number of isoforms that are retained. In Supplementary Figure 16, the FDR and TPR for the
different methods are stratified by the number of retained isoforms per gene (indicated by the number in the
header of the panels). The results are also compared to the performance achieved for the same genes with
the complete catalog. Note that if no isoforms for a given gene are retained in the catalog, the gene will
naturally not be called differential (and thus there are no triangles in the left-most panels). Moreover, the
number of truly differential genes among the genes where no isoforms remain, or, for the human simulation,
where only one isoform remains, is very low. For the fruit fly simulation, the performance drop among the
genes where only one isoform remains in the annotation catalog is large for all counting methods, while no
notable performance decrease can be seen for the genes where at least 2 isoforms remain.

In Supplementary Figure 17 we illustrate the effect of the incomplete annotation by the TPR achieved
using the complete and the incomplete catalog, stratified by the number of excluded differentially used
isoforms. For the genes where no differentially used isoforms is excluded (left panels), no performance
decrease is noticed (note that for the truly differential genes, this also means that at least two isoforms
are retained). As the number of excluded differentially used isoforms increases (middle and right panels),
the performance drops, most notably for the fruit fly simulation. Note, however, that even when both
differentially used isoforms are excluded it is sometimes possible to detect the differential transcript usage
from the remaining data.

Supplementary Figures 18 and 19 stratify the TPR based on the combination of the number of excluded
differentially used isoforms, and the total number of remaining isoforms, for the two organisms. Again,
we note that the performance depends mainly on the number of retained isoforms. We also note that the
methods that use the transcript structure to define the counting bins (kallisto, SplicingGraph and MISO)
are not able to detect the differential transcript usage for genes where only one isoform is retained.
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Supplementary Figure 16: The performance of the different counting methods, stratified by the total
number of isoforms (per gene) remaining in the annotation catalog after 20% of the transcripts are excluded.
The circles correspond to the performance when the full annotation file was used, and the triangles correspond
to the performance with the reduced annotation catalog. The number of remaining isoforms per gene, the
total number of genes in each stratum (n) and the number of truly differential genes in the stratum (n.ds)
are given in the panel headers. The three symbols for each method indicate the achieved FDR and TPR
for three q-value thresholds: 0.01, 0.05 and 0.1. The genes where no isoforms remain in the reduced catalog
(left panels) are, naturally, not called differential when the reduced catalog is used, and thus there are no
triangle symbols in the left panels. We note a big drop in performance for the genes where only one isoform
is left in the reduced catalog, while the genes where at least two isoforms remain are not noticeably affected.
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Supplementary Figure 17: The TPR of the different counting methods, stratified by the number of
excluded differentially used isoforms (0, 1 or 2; from left to right), when using the complete or incomplete
annotation catalog. The number of genes (n) as well as the number of truly differential genes (n.ds) in each
category are given in the panel headers. Note that only truly differential genes can have missing differentially
used isoforms, and thus n=n.ds for the middle and right panels). The three symbols for each method indicate
the achieved TPR for three q-value thresholds: 0.01, 0.05 and 0.1. No reduction in TPR is seen for the genes
where no differentially used isoforms are excluded. As the number of excluded differentially used transcripts
increases, the performance drops, especially for the fruit fly simulation. However, even for genes where both
differentially used isoforms are excluded there is sometimes enough redundancy to detect the differential
transcript usage.

25



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Drosophila, 0 ds.[ 2,54] rem (n = 4075, n.ds = 643) Drosophila, 1 ds. 1 rem (n = 136, n.ds = 136) Drosophila, 1 ds.[ 2,54] rem (n = 178, n.ds = 178)

Drosophila, 2 ds. 0 rem (n = 16, n.ds = 16) Drosophila, 2 ds. 1 rem (n = 15, n.ds = 15) Drosophila, 2 ds.[ 2,54] rem (n = 12, n.ds = 12)

casper
casper, incomplete

DEXSeq−default
DEXSeq−default, incomplete

DEXSeq−noaggreg
DEXSeq−noaggreg, incomplete

featureCounts−exon
featureCounts−exon, incomplete

featureCounts−flat
featureCounts−flat, incomplete

kallisto
kallisto, incomplete

MISO
MISO, incomplete

SplicingGraph
SplicingGraph, incomplete

TopHat−junctions
TopHat−junctions, incomplete

casper
casper, incomplete

DEXSeq−default
DEXSeq−default, incomplete

DEXSeq−noaggreg
DEXSeq−noaggreg, incomplete

featureCounts−exon
featureCounts−exon, incomplete

featureCounts−flat
featureCounts−flat, incomplete

kallisto
kallisto, incomplete

MISO
MISO, incomplete

SplicingGraph
SplicingGraph, incomplete

TopHat−junctions
TopHat−junctions, incomplete

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

TPR

●

●

●

●

●

●

●

●

●casper

DEXSeq−default

DEXSeq−noaggreg

featureCounts−exon

featureCounts−flat

kallisto

MISO

SplicingGraph

TopHat−junctions

● complete incomplete

Supplementary Figure 18: The TPR of the different counting methods, stratified by the number of
excluded differentially used isoforms (“0 ds”, “1 ds” or “2 ds”) and the total number of remaining isoforms
in the annotation catalog (“0 rem”, “1 rem” or “[2,54] rem”), in the fruit fly simulation. The number of
genes (n) and the number of truly differential genes (n.ds) in each category are given in the panel headers.
The three symbols for each method indicate the achieved TPR for three q-value thresholds: 0.01, 0.05 and
0.1.
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Supplementary Figure 19: The TPR of the different counting methods, stratified by the number of
excluded differentially used isoforms (“0 ds”, “1 ds” or “2 ds”) and the total number of remaining isoforms
in the annotation catalog (“0 rem”, “1 rem” or “[2,69] rem”), in the human simulation. The number of genes
(n) and the number of truly differential genes (n.ds) in each category are given in the panel headers. The
three symbols for each method indicate the achieved TPR for three q-value thresholds: 0.01, 0.05 and 0.1.
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13 Characterisation of false positives found by DEXSeq-noaggreg

In the main manuscript we showed that all counting methods displayed a particularly poor FDR control
for genes with one highly dominant isoform (Figure 4), and that the FDR control could be improved by
applying a pre-filtering step before the counting (Figure 6). Here, we characterise the false positives found
by DEXSeq-noaggreg (without the filtering) and investigate the basis for the improved FDR control achieved
through filtering.

To characterise the false positives found by DEXSeq-noaggreg we calculated the within-gene variance of
the counting bin-wise dispersion estimates, and compared to the values obtained for other gene categories
(true negatives, true positives and false negatives). The false positives showed a higher dispersion variability
than the other categories, especially for the genes with one largely dominant transcript (Supplementary
Figure 20) and genes with many counting bins (Supplementary Figure 21).

Drosophila, [0.000,0.333) (n = 10426) Drosophila, [0.333,0.667) (n = 1302) Drosophila, [0.667,1.000] (n = 2209)
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Supplementary Figure 20: Distribution of within-gene variability of counting-bin dispersion estimates
obtained by DEXSeq-noaggreg, stratified by the relative abundance difference between the two most abundant
isoforms and by the gene status (true positive, false positive, true negative and false negative). The false
positives show a larger variability in the dispersion estimates than the other gene categories, especially for
the genes with one largely dominant isoform (rightmost panels).
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Supplementary Figure 21: Distribution of within-gene variability of counting-bin dispersion estimates
obtained by DEXSeq-noaggreg, stratified by the number of DEXSeq-noaggreg counting bins and by the gene
status (true positive, false positive, true negative and false negative). The false positives show a larger
variability in the dispersion estimates than the other gene categories, especially for the genes with many
counting bins (in the human simulation, lower rightmost panel).
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14 Improved FDR control with filtering

14.1 DEXSeq-noaggreg

In the main text we showed that by pre-filtering the transcript catalog before constructing the DEXSeq
counting bins, excluding all transcripts where the underlying relative abundance was below a certain thresh-
old in both conditions, led to improved control of the FDR. While we could use the underlying relative
abundances in our simulated data, these are not available for a real dataset. We therefore suggested that
the relative abundances could be estimated by, for example, kallisto [2], and that the resulting estimates
could be used to filter the transcript catalog. Here, we evaluate this approach and compare it to other com-
mon filtering approaches. These approaches do not exclude features before the counting, but rather exclude
counting bins with low or constant expression values, without accounting for the transcript structure. To
make the comparison fair, we set the filter thresholds in the bin filtering approaches in such ways that the
retained number of bins is the same as for the isoform-based filtering (with abundance estimates by kallisto).

The relative abundance estimates for each isoform were obtained from the sample-wise kallisto abundance
estimates. For each sample and each transcript, we calculated the ratio between the TPM for the transcript
and the sum of the TPM estimates for all transcripts of the corresponding gene. For each abundance
threshold (5%, 10%, 15% and 25%), we excluded all transcripts for which the relative abundance estimate
was below the threshold for all six samples.

For the bin filtering, we applied six different approaches. All of them take the starting point in the nor-
malised bin counts obtained from DEXSeq (using the DEXSeq::featureCounts accessor, with the argument
normalized = TRUE). Let Cik denote this normalised count in the i’th bin and the k’th sample. We also
let Gi denote the collection of bins belonging to the same gene as bin i, and Li and Ni denote the length of
bin i (in kb) and the number of isoforms that contain bin i, respectively. The first filtering approach simply
calculates the sum of the normalised counts across all the six samples, and excludes all bins where this sum
falls below a given threshold (as mentioned above, the threshold is chosen to give the same number of bins
as for the isoform-based filtering). In other words, the filtering statistic for the i’th bin is

f1i =
∑
k

Cik.

A potential disadvantage of this approach is that it doesn’t account for the overall expression level of the
gene. Thus, we also filtered using the relative bin counts, that is, the normalised bin counts divided by the
sum of all the normalised bin counts for the corresponding gene:

f2i = max
k

Cik∑
j∈Gi

Cjk
.

The maximum over the samples is introduced to filter out only bins that are lowly expressed across all
samples. The f2 filtering criterion does not, however, account for the different sizes of the bins, and thus
may not correspond to the actual relative abundance. Therefore, we also calculated relative bin abundances
by first dividing each normalised count with the length of the bin (in kb), and then calculating the ratio
between each such abundance measure and the sum of all abundance measures for the gene:

f3i = max
k

Cik

Li∑
j∈Gi

Cjk

Lj

.

When constructing the DEXSeq bin count matrix, a read overlapping multiple bins is allowed to con-
tribute to the read count for each of them. Thus, the count for a bin depends also on the number of isoforms
in which it is contained. To account for this, we defined another filter statistic by dividing the normalised
counts with the number of isoforms covering the bin instead of its length:

f4i = max
k

Cik

Ni∑
j∈Gi

Cjk

Nj

.

30



We also combine the two corrections (length and number of overlapping isoforms) to create the filter statistic:

f5i = max
k

Cik

NiLi∑
j∈Gi

Cjk

NjLj

.

Finally, we filter using the variance of the (log2-transformed) bin counts across all samples:

f6i = vark(log2(Cik + 1)).

Supplementary Tables 2 and 3 summarise the filtering thresholds, the number of retained bins and the
total count (averaged across all samples) obtained for each filtering criterion. In Supplementary Figures 22-
25 we compare the performance achieved with the different filtering criteria. Each figure corresponds to
one “filtering threshold”, or rather a given number of retained bins. Supplementary Figure 26 shows the
performance stratified by the relative abundance difference between the two most abundant isoforms, for
the most stringent filtering criteria (corresponding to excluding all isoforms with relative abundances below
25%). As we see in these figures, all filtering methods except the bin variance-based (and all cutoffs) improve
the FDR control compared to the unfiltered situation. However, the isoform-guided filtering methods stand
out from the bin filtering methods with a lower reduction (or sometimes a slight gain) in power, especially
for the human simulation and for the genes where the two most highly expressed isoforms are almost equally
expressed (Supplementary Figure 26). The isoform abundances estimated by kallisto perform almost as well
as using the underlying abundances from RSEM (which were used for the simulation), which suggests that the
isoform-guided filtering is viable also in practice, where the underlying abundances are not known. Among
the bin filtering methods, the ones dividing the normalised count by the bin length (f3 and f5) perform
worst in terms of power loss, likely because they exclude long bins with high read count (Supplementary
Tables 2 and 3).
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Supplementary Table 2: Summary of the number of retained transcripts and DEXSeq-noaggreg counting
bins, and the sum of the bin read counts for various filtering methods, in the fruit fly simulation. For the
definition of f1-f6, see the text.

Isoform filtering, underlying abundances

complete ≥ 5% ≥ 10% ≥ 15% ≥ 25%

# transcripts 26951 20117 (74.6%) 18384 (68.2%) 17323 (64.3%) 15823 (58.7%)
# bins 73981 66554 (90.0%) 64196 (86.8%) 62566 (84.6%) 59649 (80.6%)
tot count 24015599 23777896 (99.0%) 23647396 (98.5%) 23521769 (97.9%) 23029713 (95.9%)

Isoform filtering, abundance estimates by kallisto

complete ≥ 5% ≥ 10% ≥ 15% ≥ 25%

# transcripts 26951 22047 (81.8%) 20163 (74.8%) 18804 (69.8%) 17024 (63.2%)
# bins 73981 68595 (92.7%) 66433 (89.8%) 64605 (87.3%) 61822 (83.6%)
tot count 24015599 23837853 (99.3%) 23754632 (98.9%) 23626187 (98.4%) 23346430 (97.2%)

Bin filtering, total normalised count

complete f1i ≥ 4.02 f1i ≥ 11.7 f1i ≥ 20.6 f1i ≥ 38.9

# bins 73981 68594 (92.7%) 66432 (89.8%) 64605 (87.3%) 61822 (83.6%)
tot count 24015599 24014899 (100.0%) 24012076 (100.0%) 24007225 (100.0%) 23993460 (99.9%)

Bin filtering, relative bin count

complete f2i ≥ 0.24% f2i ≥ 0.66% f2i ≥ 1.14% f2i ≥ 1.98%

# bins 73981 68595 (92.7%) 66432 (89.8%) 64604 (87.3%) 61821 (83.6%)
tot count 24015599 24007556 (100.0%) 23967769 (99.8%) 23901931 (99.5%) 23717686 (98.8%)

Bin filtering, relative bin count accounting for bin size

complete f3i ≥ 0.47% f3i ≥ 1.13% f3i ≥ 1.74% f3i ≥ 2.66%

# bins 73981 68594 (92.7%) 66432 (89.8%) 64604 (87.3%) 61822 (83.6%)
tot count 24015599 23950651 (99.7%) 23690182 (98.6%) 23225637 (96.7%) 22358892 (93.1%)

Bin filtering, relative bin count accounting for number of overlapping isoforms

complete f4i ≥ 0.60% f4i ≥ 1.31% f4i ≥ 1.88% f4i ≥ 2.65%

# bins 73981 68594 (92.7%) 66432 (89.8%) 64606 (87.3%) 61821 (83.6%)
tot count 24015599 23998084 (99.9%) 23908166 (99.6%) 23784020 (99.0%) 23477292 (97.8%)

Bin filtering, relative bin count accounting for bin size and number of overlapping isoforms

complete f5i ≥ 0.92% f5i ≥ 1.52% f5i ≥ 2.02% f5i ≥ 2.81%

# bins 73981 68594 (92.7%) 66432 (89.8%) 64605 (87.3%) 61821 (83.6%)
tot count 24015599 23702564 (98.7%) 22958702 (95.6%) 22350166 (93.1%) 21445181 (89.3%)

Bin filtering, variance of log2(normalised counts + 1)

complete f6i ≥ 0.029 f6i ≥ 0.045 f6i ≥ 0.056 f6i ≥ 0.072

# bins 73981 68594 (92.7%) 66432 (89.8%) 64604 (87.3%) 61821 (83.6%)
tot count 24015599 23247326 (96.8%) 22366532 (93.1%) 21596464 (89.9%) 20385864 (84.9%)
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Supplementary Table 3: Summary of the number of retained transcripts and DEXSeq-noaggreg counting
bins, and the sum of the bin read counts for various filtering methods, in the human simulation. For the
definition of f1-f6, see the text.

Isoform filtering, underlying abundances

complete ≥ 5% ≥ 10% ≥ 15% ≥ 25%

# transcripts 145342 37604 (25.9%) 30151 (20.7%) 25472 (17.5%) 19739 (13.6%)
# bins 468722 211698 (45.2%) 193282 (41.2%) 180439 (38.5%) 160553 (34.3%)
tot count 81568776 65165362 (79.9%) 64069414 (78.5%) 63392031 (77.7%) 61330829 (75.2%)

Isoform filtering, abundance estimates by kallisto

complete ≥ 5% ≥ 10% ≥ 15% ≥ 25%

# transcripts 145342 50334 (34.6%) 40233 (27.7%) 34108 (23.5%) 26151 (18.0%)
# bins 468722 239238 (51.0%) 216265 (46.1%) 201769 (43.0%) 180642 (38.5%)
tot count 81568776 66295556 (81.3%) 64754086 (79.4%) 64025772 (78.5%) 62566691 (76.7%)

Bin filtering, total normalised count

complete f1i ≥ 39.1 f1i ≥ 74.7 f1i ≥ 108.9 f1i ≥ 174.9

# bins 468722 239238 (51.0%) 216265 (46.1%) 201769 (43.0%) 180642 (38.5%)
tot count 81568776 81383615 (99.8%) 81169055 (99.5%) 80944942 (99.2%) 80442081 (98.6%)

Bin filtering, relative abundance

complete f2i ≥ 1.51% f2i ≥ 2.05% f2i ≥ 2.36% f2i ≥ 2.81%

# bins 468722 239237 (51.0%) 216265 (46.1%) 201768 (43.0%) 180641 (38.5%)
tot count 81568776 75136307 (92.1%) 68122647 (83.5%) 64035507 (78.5%) 58920931 (72.2%)

Bin filtering, relative abundance accounting for bin size

complete f3i ≥ 0.90% f3i ≥ 1.24% f3i ≥ 1.48% f3i ≥ 1.88%

# bins 468722 239237 (51.0%) 216264 (46.1%) 201768 (43.0%) 180642 (38.5%)
tot count 81568776 62197495 (76.3%) 53762398 (65.9%) 48978079 (60.0%) 42117414 (51.6%)

Bin filtering, relative abundance accounting for number of overlapping isoforms

complete f4i ≥ 1.46% f4i ≥ 1.83% f4i ≥ 2.06% f4i ≥ 2.43%

# bins 468722 239237 (51.0%) 216265 (46.1%) 201769 (43.0%) 180642 (38.5%)
tot count 81568776 71599224 (87.8%) 65660296 (80.5%) 62233309 (76.3%) 56925572 (69.8%)

Bin filtering, relative abundance accounting for bin size and number of overlapping isoforms

complete f5i ≥ 1.03% f5i ≥ 1.36% f5i ≥ 1.59% f5i ≥ 1.99%

# bins 468722 239237 (51.0%) 216265 (46.1%) 201769 (43.0%) 180642 (38.5%)
tot count 81568776 57669094 (70.7%) 49848576 (61.1%) 45460296 (55.7%) 39462172 (48.4%)

Bin filtering, variance of log2(normalised counts + 1)

complete f6i ≥ 0.15 f6i ≥ 0.18 f6i ≥ 0.21 f6i ≥ 0.25

# bins 468722 239237 (51.0%) 216265 (46.1%) 201768 (43.0%) 180872 (38.6%)
tot count 81568776 56154992 (68.8%) 51755644 (63.5%) 48355788 (59.3%) 43636424 (53.5%)
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Supplementary Figure 22: Illustration of the performance of DEXSeq-noaggreg after different types of
(isoform-guided and bin-based) filtering. DEXSeq-noaggreg corresponds to the unfiltered analysis. The
DEXSeq-noaggreg (RSEM >5%) corresponds to filtering out all isoforms with relative abundance below 5%
in both conditions in the RSEM estimates from real data, underlying the simulations. DEXSeq-noaggreg
(kallisto >5%) are the results obtained after excluding all isoform with estimated relative abundance below
5% in all six samples according to kallisto. Both these filterings were performed before the DEXSeq counting
bin definition and read counting. The remaining filtering approaches (f1-f6) are applied on the original
DEXSeq-noaggreg bin counts, using the filter criteria f1-f6 defined in the text. The filter thresholds for
these methods were defined in such a way that the total number of bins were the same as for DEXSeq-
noaggreg (kallisto >5%) (see Supplementary Tables 2 and 3). All filtering methods except f6 improve the
FDR control compared to the unfiltered analysis, but the isoform-guided filtering approaches provide the
smallest reduction in power. Moreover, the estimated relative abundances from kallisto give almost as good
results as using the underlying relative abundances used for the simulation.
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Supplementary Figure 23: Illustration of the performance of DEXSeq-noaggreg after different types of
(isoform-guided and bin-based) filtering. DEXSeq-noaggreg corresponds to the unfiltered analysis. The
DEXSeq-noaggreg (RSEM >10%) corresponds to filtering out all isoforms with relative abundance below
10% in both conditions in the RSEM estimates from real data, underlying the simulations. DEXSeq-noaggreg
(kallisto >10%) are the results obtained after excluding all isoform with estimated relative abundance below
10% in all six samples according to kallisto. Both these filterings were performed before the DEXSeq
counting bin definition and read counting. The remaining filtering approaches (f1-f6) are applied on the
original DEXSeq-noaggreg bin counts, using the filter criteria f1-f6 defined in the text. The filter thresholds
for these methods were defined in such a way that the total number of bins were the same as for DEXSeq-
noaggreg (kallisto >10%) (see Supplementary Tables 2 and 3). All filtering methods except f6 improve the
FDR control compared to the unfiltered analysis, but the isoform-guided filtering approaches provide the
smallest reduction in power. Moreover, the estimated relative abundances from kallisto give almost as good
results as using the underlying relative abundances used for the simulation.
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Supplementary Figure 24: Illustration of the performance of DEXSeq-noaggreg after different types of
(isoform-guided and bin-based) filtering. DEXSeq-noaggreg corresponds to the unfiltered analysis. The
DEXSeq-noaggreg (RSEM >15%) corresponds to filtering out all isoforms with relative abundance below
15% in both conditions in the RSEM estimates from real data, underlying the simulations. DEXSeq-noaggreg
(kallisto >15%) are the results obtained after excluding all isoform with estimated relative abundance below
15% in all six samples according to kallisto. Both these filterings were performed before the DEXSeq
counting bin definition and read counting. The remaining filtering approaches (f1-f6) are applied on the
original DEXSeq-noaggreg bin counts, using the filter criteria f1-f6 defined in the text. The filter thresholds
for these methods were defined in such a way that the total number of bins were the same as for DEXSeq-
noaggreg (kallisto >15%) (see Supplementary Tables 2 and 3). All filtering methods except f6 improve the
FDR control compared to the unfiltered analysis, but the isoform-guided filtering approaches provide the
smallest reduction in power. Moreover, the estimated relative abundances from kallisto give almost as good
results as using the underlying relative abundances used for the simulation.
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Supplementary Figure 25: Illustration of the performance of DEXSeq-noaggreg after different types of
(isoform-guided and bin-based) filtering. DEXSeq-noaggreg corresponds to the unfiltered analysis. The
DEXSeq-noaggreg (RSEM >25%) corresponds to filtering out all isoforms with relative abundance below
25% in both conditions in the RSEM estimates from real data, underlying the simulations. DEXSeq-noaggreg
(kallisto >25%) are the results obtained after excluding all isoform with estimated relative abundance below
25% in all six samples according to kallisto. Both these filterings were performed before the DEXSeq
counting bin definition and read counting. The remaining filtering approaches (f1-f6) are applied on the
original DEXSeq-noaggreg bin counts, using the filter criteria f1-f6 defined in the text. The filter thresholds
for these methods were defined in such a way that the total number of bins were the same as for DEXSeq-
noaggreg (kallisto >25%) (see Supplementary Tables 2 and 3). All filtering methods except f6 improve the
FDR control compared to the unfiltered analysis, but the isoform-guided filtering approaches provide the
smallest reduction in power. Moreover, the estimated relative abundances from kallisto give almost as good
results as using the underlying relative abundances used for the simulation.
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Supplementary Figure 26: Illustration of the performance of DEXSeq-noaggreg after different types of
(isoform-guided and bin-based) filtering, stratified by the relative abundance difference between the two most
highly abundant isoforms. DEXSeq-noaggreg corresponds to the unfiltered analysis. The DEXSeq-noaggreg
(RSEM >25%) corresponds to filtering out all isoforms with relative abundance below 25% in both conditions
in the RSEM estimates from real data, underlying the simulations. DEXSeq-noaggreg (kallisto >25%) are the
results obtained after excluding all isoform with estimated relative abundance below 25% in all six samples
according to kallisto. Both these filterings were performed before the DEXSeq counting bin definition and
read counting. The remaining filtering approaches (f1-f6) are applied on the original DEXSeq-noaggreg bin
counts, using the filter criteria f1-f6 defined in the text. The filter thresholds for these methods were defined
in such a way that the total number of bins were the same as for DEXSeq-noaggreg (kallisto >25%) (see
Supplementary Tables 2 and 3). All filtering methods except f6 improve the FDR control compared to
the unfiltered analysis, but the isoform-guided filtering approaches provide the smallest reduction in power,
especially for the genes where the two most highly abundant isoforms are expressed at similar levels (left
panels). Moreover, the estimated relative abundances from kallisto give almost as good results as using the
underlying relative abundances used for the simulation.

38



14.1.1 FPs differing between original and 5% filtered with DEXSeq-noaggreg

In the main text we proposed a simple isoform pre-filtering approach to address the high false discovery
rates seen, mainly, in the human simulation with the counting methods. Already excluding all isoforms with
relative abundance below 5% in both conditions before constructing the DEXSEq counting bins improved
the FDR considerably, without loss of power (see Figure 6). By inspecting the false positives found uniquely
when using the original annotation file, or uniquely when using the filtered annotation file, we can increase
our understanding of the reasons for the improvement. Here we show a few examples from each of these
categories (Supplementary Figures 27-32).
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Supplementary Figure 27: Example illustration of one truly non-differential gene classified as differential
after filtering (excluding all isoforms with relative abundance below 5% in both conditions) but not with the
original annotation file. The first six tracks show the read coverage for each of the six samples, coloured by
condition. The two tracks below the genomic coordinates illustrate the counting bins generated by DEXSeq
with the original annotation file (top track) and after filtering (bottom track). Bins coloured in green are
those assigned a p-value below 0.05. Bins coloured in red also have an adjusted p-value below 0.05.
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Supplementary Figure 28: Example illustration of one truly non-differential gene classified as differential
after filtering (excluding all isoforms with relative abundance below 5% in both conditions) but not with the
original annotation file. The first six tracks show the read coverage for each of the six samples, coloured by
condition. The two tracks below the genomic coordinates illustrate the counting bins generated by DEXSeq
with the original annotation file (top track) and after filtering (bottom track). Bins coloured in green are
those assigned a p-value below 0.05. Bins coloured in red also have an adjusted p-value below 0.05.
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Supplementary Figure 29: Example illustration of one truly non-differential gene classified as differential
after filtering (excluding all isoforms with relative abundance below 5% in both conditions) but not with the
original annotation file. The first six tracks show the read coverage for each of the six samples, coloured by
condition. The two tracks below the genomic coordinates illustrate the counting bins generated by DEXSeq
with the original annotation file (top track) and after filtering (bottom track). Bins coloured in green are
those assigned a p-value below 0.05. Bins coloured in red also have an adjusted p-value below 0.05.
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Supplementary Figure 30: Example illustration of one truly non-differential gene classified as differential
with the original annotation file but not after filtering (excluding all isoforms with relative abundance below
5% in both conditions). The first six tracks show the read coverage for each of the six samples, coloured by
condition. The two tracks below the genomic coordinates illustrate the counting bins generated by DEXSeq
with the original annotation file (top track) and after filtering (bottom track). Bins coloured in green are
those assigned a p-value below 0.05. Bins coloured in red also have an adjusted p-value below 0.05.
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Supplementary Figure 31: Example illustration of one truly non-differential gene classified as differential
with the original annotation file but not after filtering (excluding all isoforms with relative abundance below
5% in both conditions). The first six tracks show the read coverage for each of the six samples, coloured by
condition. The two tracks below the genomic coordinates illustrate the counting bins generated by DEXSeq
with the original annotation file (top track) and after filtering (bottom track). Bins coloured in green are
those assigned a p-value below 0.05. Bins coloured in red also have an adjusted p-value below 0.05.
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Supplementary Figure 32: Example illustration of one truly non-differential gene classified as differential
with the original annotation file but not after filtering (excluding all isoforms with relative abundance below
5% in both conditions). The first six tracks show the read coverage for each of the six samples, coloured by
condition. The two tracks below the genomic coordinates illustrate the counting bins generated by DEXSeq
with the original annotation file (top track) and after filtering (bottom track). Bins coloured in green are
those assigned a p-value below 0.05. Bins coloured in red also have an adjusted p-value below 0.05.
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14.2 kallisto

Similarly to the analysis performed for DEXSeq-noaggreg in the main manuscript and in the previous sub-
section, we evaluated the effect of different types of filtering on the kallisto results (still, using DEXSeq as
the inference engine). First, we used the underlying (“true”) TPM values to filter out all transcripts with
relative abundance (within a gene) below 5%, 10%, 15% or 25%, respectively, from the transcript fasta file
generated by TopHat (which was used to generate the kallisto index for the full transcript set). From the
filtered fasta files, we generated new kallisto indexes and re-quantified the remaining transcripts with kallisto,
followed by differential analysis with DEXSeq. Supplementary Figure 33 compares the results obtained with
the unfiltered kallisto quantifications to the ones obtained after each of the four filterings. Similarly to
DEXSeq-noaggreg, the performance of kallisto+DEXSeq is considerably improved by the pre-filtering of the
annotation catalog.
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Supplementary Figure 33: Illustration of the performance of kallisto after various degrees of isoform-
guided annotation filtering, stratified by the relative abundance difference between the two most highly
abundant isoforms. Excluding lowly expressed transcripts from the annotation catalog before kallisto quan-
tification improves the control of FDR, and leads to a slight gain of power.

In addition to the filtering based on the underlying relative abundances (Supplementary Figure 33),
we evaluated two filterings based on the actual kallisto abundance estimates. First, we excluded all bins
(transcripts) with an estimated relative abundance (within a gene) below 5% in all samples and applied
DEXSeq to the remaining transcript counts. Second, we re-quantified the abundances of the remaining
transcripts after this filtering, and applied DEXSeq to the re-estimated counts. Supplementary Figure 34
compares the different types of filtering approaches in terms of their impact on the performance of kallisto.
While filtering based on the “true” underlying TPM values led to the largest improvement in FDR control,
especially in the human simulation, filtering based on the estimated values, with or without re-estimation of
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the abundances, also gave tangible performance improvements.
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Supplementary Figure 34: Illustration of the performance of kallisto after different types of annota-
tion filtering. “Pre-filtering” refers to the filtering using the underlying, “true” abundance values, while
“quant filtering” refers to filtering based on the observed kallisto quantification results. Re-quantifying the
abundances after filtering did not lead to a major performance improvement.
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14.3 rMATS

In the previous sections we evaluated how isoform pre-filtering affects the performance of two counting bin
definition methods (DEXSeq-noaggreg and kallisto) when used with DEXSeq. Here, we consider instead
the effect of different types of filtering on the performance of rMATS. First, we re-ran rMATS using the
annotation catalog obtained by excluding transcripts with a true relative abundance (within a gene) below
5% in both sample conditions, and compared to the performance based on the complete annotation catalog
(cf. Figure 6 in the main text and Supplementary Figure 33 for the effect of this type of filtering on the
counting methods). Second, we take advantage of the fact that rMATS lets the user define the null hypothesis
as H0 : |∆ψ| ≤ δ, where δ is an arbitrary non-negative value and ∆ψ is the difference in percent spliced
in for a given event between two conditions. Setting δ > 0 avoids small, potentially biologically irrelevant
effects being called significant. We evaluated the effect of setting δ = 0.1, using the full annotation catalog
as the basis. Supplementary Figure 35 shows that as expected, setting δ > 0 improves the FDR control quite
drastically, since small, spurious changes will not be called significant. However, it also reduces the power,
especially for the genes where there is a real, but small effect. We note that also for rMATS, the pre-filtering
provides a tangible improvement compared to applying rMATS on the complete transcript catalog.
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Supplementary Figure 35: Illustration of the performance of rMATS after different types of filtering.
Isoform pre-filtering corresponds to applying rMATS to a filtered annotation catalog, where lowly expressed
transcripts have been removed. The other evaluated modification corresponds to using δ = 0.1 instead of
δ = 0 to define the rMATS null hypothesis.
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[2] Nicolas Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal RNA-Seq quantification.
arXiv preprint 1505.02710, May 2015.

[3] Sylvain Foissac and Michael Sammeth. ASTALAVISTA: dynamic and flexible analysis of alternative
splicing events in custom gene datasets. Nucleic Acids Research, 35(Web Server issue):W297–9, July
2007.

[4] Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A Pevzner. Splicing graphs and
EST assembly problem. Bioinformatics, 18 Suppl 1:S181–S188, 2002.

[5] Wolfgang Huber, Vincent J Carey, Robert Gentleman, Simon Anders, Marc Carlson, Benilton S Car-
valho, Hector Corrada Bravo, Sean Davis, Laurent Gatto, Thomas Girke, Raphael Gottardo, Florian
Hahne, Kasper D Hansen, Rafael A Irizarry, Michael Lawrence, Michael I Love, James Macdonald,
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